

HDMO DUCT MOUNT Carbon Dioxide & Temp Sensor

Modbus RTU, 0-10V or 4-20mA with LCD display and Relay output

USE:

Electronic Duct Temperature & CO2 measurement & control, with 0-10v, 4-20ma outputs. Capable of direct scaled CO2 control of EC or VSD driven fresh fan or motorised modulating damper motor for local CO2 control.

Easy and Flexible Configuration via phone App*

- Selectable CO2 scaling and output limiting (clipping) options
- Test mode for on-site installation and wiring verification
- Configurable relay parameters: set-point, delay, latch, and hysteresis
- 2 configurable Analogue outputs & 2 relay outputs
- Automatic internal CO2 Calibration to maintain accuracy over life time.

Technical Data

<u>CO2</u>

Measuring range 1	400 1000 ppm	
Accuracy 1	±50ppm ±2.5% of reading	
Measuring range 2	1000 2000 ppm	
Accuracy 2	±50ppm ±3% of reading	
Measuring range 3	2000 5000 ppm	
Accuracy 3	±40ppm ±5% of reading	
Measurement interval	5 seconds	
Response time T63	typical 60 seconds	
ABC algorithm, period	on/off, 7 days	
Accuracy drift after five years with ABC enabled		
range	400 2000 ppm	
Accuracy	±50ppm ±0.5% of reading	
Field calibration points	3	

Temperature

Measurement range	-10 60 °C
Accuracy (including non-l	inearity, hysteresis, and
repeatability)	typ. ±0.5°C (15 35°C)
	typ. ±0.9°C (-1060 °C)
Accuracy drift ³	< 0.03°C/year
Field calibration points	2

Analog output (two channels)

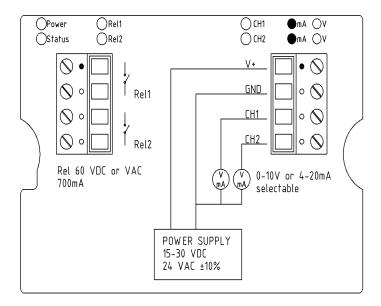
3-wire, 4-20 mA, 0-10V, 0-5 V, 1-5V

Accuracy at $+25\,^{\circ}\text{C}$ $\pm 0.1\%$ full scale Temperature dependence $\pm 0.005\%/^{\circ}\text{C}$ full scale External loads current output RL < 400 ohm voltage output RL > 10k ohm

Relay output (two contacts) (option)

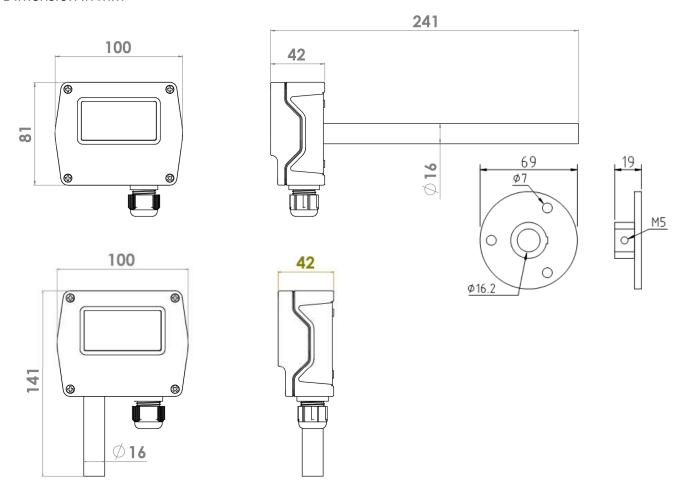
Contact	SPST NO, 60 VDC/VAC 700mA
Activate	High-point and Low-point with enable
Set point	-65536 65535
Hysteresis	0 9999
On/Off dela	y 0 3600 second
Latch	on/off

Power supply	15-35 VDC, 24 VAC
Current consume	max. 300mA
Operating temperature	-10 60°C


Mechanics

Housing materia	ıl	PC, Polycarbonate
Probe material		Aluminum
Flange material		Aluminum
Housing classific	ation	IP65
Cable gland		PG9 with strain relief
Cable bushing		4.5 8.2 mm
Terminal block		AWG 1224
Connection	Cable	gland with terminal block

Electromagnetic compatibility


Complies with EMC standard EN61326-1, Industrial Environment

Wiring

Dimension

Dimension in mm

Calibration —CO₂ and Temperature Calibration

This page allows calibration of both CO₂ and temperature readings.

CO2 Auto-calib setting

Force re-calibrate: Forces the device to perform an immediate calibration.

Auto-calib on/off setting: Enables or disables the CO₂ auto-calibration function.

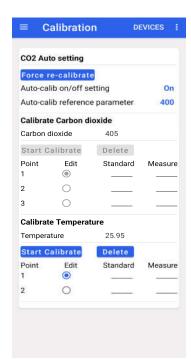
Auto-calib reference parameter: Sets the reference value for background concentration. The default value is **400 ppm**, with an adjustable range of **0–20000 ppm**.

Calibrate Carbon dioxide

Available only when Auto-calib was set off.

Displays the current CO₂ concentration reading and allows manual calibration.

Select the calibration point, press **Start Calibrate**, and enter the standard CO₂ concentration to complete calibration.


Press **Delete** to remove the calibration point and restore factory settings.

Calibrate Temperature

Displays the current temperature reading and supports both single-point and multi-point calibration.

Select the calibration point, press **Start Calibrate**, and enter the reference temperature to complete calibration.

Press Delete to remove the calibration point and restore factory settings.

Analog Output (All items displayed in blue text are adjustable.)

This device provides **two output channels (CH1 and CH2)**, each of which can be configured to output either **CO₂** or **temperature** data.

The system supports **five analog output ranges** to meet various application needs:

- 4–20 mA (default range)
- 0-20 mA
- 0-10 V
- 0-5 V
- 1-5 V

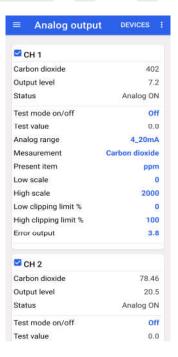
.

The analog output range can be freely defined according to the desired physical quantity. For example:

When the CO_2 concentration is **0 ppm**, the output is **4 mA**; when the concentration is **2000 ppm**, the output is **20 mA**. Intermediate values are converted linearly between these limits.

If users prefer not to have the current or voltage reach the absolute minimum or maximum, the Clipping limit (%) can be adjusted to restrict the upper and lower output boundaries, expressed as a percentage.

Error output defines the output behavior in the event of a fault condition. For output modes that do not include zero (such as 4–20 mA), two error output options are available:


Low: 3.8 mAHigh: 21 mA

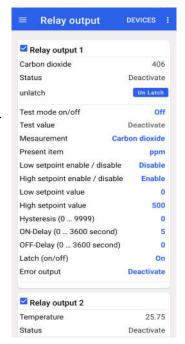
Users can select the appropriate error output behavior according to their monitoring or alarm requirements.

Test mode & Test value:

When test mode is enabled, a desired test value can be set.

The device will force the output to this fixed value, allowing convenient verification during installation or system testing.

Relay Output (All items displayed in blue text are adjustable.)


This device provides **two relay outputs**, each of which can be configured to operate based on either **CO₂** or **temperature**.

Temperature display can be switched between Celsius (°C) and Fahrenheit (°F).

In the **Low / High setpoint value** fields, you can define the upper and lower trigger thresholds.

The **Low / High setpoint enable / disable** options allow you to enable or disable these threshold functions.

Hysteresis prevents frequent switching of the relay output when the measured value fluctuates near the setpoint, which could otherwise cause communication or control instability. For example, if the **Low / High setpoint** are set to 0 / 500 and **Hysteresis** is 10: When the value rises to 501, the relay is triggered to **ON**; when it decreases to 498, it remains **ON** because it is still within the hysteresis range. Only when it drops to 490 (500 – 10) or below will the relay turn **OFF**. (Adjustable range: 0–9999)

ON / OFF Delay defines the signal delay time for relay switching, with a configurable range of 0–3600 seconds. This function adds a delay before sending the signal to the host system, ensuring compatibility with slower controllers that may require additional processing time.

Error output determines the relay state when an error occurs, with selectable options of **Activate** or **Deactivate**.

Latch function is used to record abnormal trigger events. When enabled, if a reading exceeds the setpoint, the relay status (**Status**) will remain **Activate** even if the value later returns to the normal range.

The state will reset to **Deactivate** only after manually pressing **Un Latch**.

When the latch function is disabled, the relay status (**Activate / Deactivate**) will update dynamically based on whether the current value exceeds the setpoint.

Test mode & Test value

When test mode is enabled, the relay output can be manually set to **Activate** or **Deactivate**, allowing convenient verification during installation or system testing.