

HTC-DIGITAL-LCD

PROGRAMMABLE TEMPERATURE CONTROLLER YEARLY PROGRAMMABLE TIME SWITCH

COMPATIBLE WITH A WIDE RANGE OF SENSORS

Features

- Measure & Control Temperature & CO2 levels with analog & digital I/O
- Temperature Inputs can be Thermistors or 0-10vDC
- Five 8 Amp (2.5) Relays . 4 Freely Configurable
- Two 0-10VDC Analog Configurable Outputs
- LED Indication of Relay Outputs
- O/A Temp. Input to Allow use of Fresh Air for Cooling or Heating if Suitable
- Preset for most Common Usage but easily Editable with intuitive Menu
- Mounts in most M.C.B din rail enclosures
- Event Driven Time Switch allowing switching **Past** Midnight.
- Optional connect CO2 & O/A sensors to override Economy cycle Dampers.
- Programmable Start by Internal 365 day T/Switch & or Push Button triggered Run Timer & or Manual On/Off Switch.
- **Modbus** for Remote BMS Override Control & Monitoring.
- Auto / Off / On & AHR optional override inputs

The HTC-DIGITAL-LCD is usually mounted in the mechanical services switchboard and connected to remote measuring sensors by a 2 or 3 wire screened cable (or alternatively can be located in the air conditioning control cabinet). The Controller is a fully programmable microprocessor based Temperature Controller with optional use of an internal 365 day Time Switch & / or Run Timer facility all in the one model. The Controller is intended for applications where On/Off control of Heating and Cooling stages and / or control of modulating actuators is required. Four of the five relays are programmable for their mode of operation (as heat or cool stages or as both) and individual switching characteristics. The 5th relay is dedicated as a System Run (fan/time switch) relay. Two Analog 0-10vDC output signals can also be programmed individually for start, range and mode of operation. Outside Air Temperature and Room (or R/A duct) CO2 sensors can also be optionally connected to override motorized modulating economy cycle damper operation. Use of fresh air intake (Economy Cycle Damper operation) due to high CO2 levels can be limited on low & high outside air temperatures (adjustable) so as not to inhibit normal temperature control.

This controller via MODBUS would also make an ideal low cost semi independent stand alone A/C controller supervised, overridden & monitored by a BMS system.

Technical Data (Cont.)

Environmental Conditions	Operation					
	Ambient Temperature	045oC				
	Humidity	< 85 % RH (Non Condensing)				
	Storage and Transport					
	Ambient Temperature	-565oC				
_	Humidity	< 90 % RH (Non Condensing)				
Product Standards	COMPLIES TO ALL RELEVENT AUSTRALIAN STANDARDS including 6mm segregation between high & low voltage connections					
Weight	Including Packaging	600 grams				
Weight _	Including Packaging Colour	600 grams Grey				
Weight – Housing						
-	Colour	Grey				
-	Colour Material	Grey ABS POLYCARB				
-	Colour Material UV Stabilised	Grey ABS POLYCARB YES				

Terminal Designations

X1	Main	Temperature	Sensor	Input ((Passive	or Active)	
----	------	-------------	--------	---------	----------	------------	--

X2 10 k Ohms Remote set Point (Optional connection)

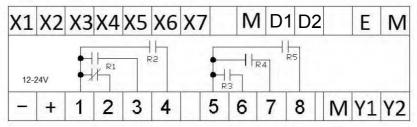
X3 O/A sensor for Econ.Cycle (Optional connection)

X4 CO2 Room or R/A Duct sensor (Optional connection)

X5 MODBUS RS485 - A Terminal

X6 MODBUS RS485 - B Terminal

X7 MODBUS SHIELD (GND)


M Common sensor & signal ground

D1 System OFF &/or AHR trigger input

D2 Manual System ON (T/SW.) Override

E & M Expansion O/P to slave module

ACTUAL TERMINAL LAYOUT

- 12-24 Volt Supply Neutral (internally connected to terminals M)

+ 12-24 Volt AC or DC Supply Active

1 Relay 1 & 2 Common

2 Relay 1 Normally Closed

3 Relay 1 Normally Open

4 Relay 2 Normally Open

5 Relay 3,4 & 5 Common

6 Relay 3 Normally Open

7 Relay 4 Normally Open

Relay 5 Normally Open (FAN)

M Signal ground

Y1 Analog Modulating Output 0-10 vDC

Y2 Analog Modulating Output 0-10 vDC

Abbreviations & Definitions	DB	Dead Band in Degrees Celsius		
	SD	Switching Differential in Degrees Celsius		
	PB	Proportional band in Degrees Celsius		
	TD	Time Delay in minutes & seconds		
	1	Integral Time in minutes & seconds		
	MODE	H = <u>HEAT</u> ONLY MODE		
		C = COOL ONLY MODE		
		B = <u>BOTH</u> HEAT & COOL MODE		

Pre Loaded Program

FACTORY DEFAULT SETTINGS

3 Stage Reverse Cycle A/C Unit

Y1 Set as Economy Cycle o/p (Cool only) (P only mode)

Y2 Set as Modulating Compressor output (P only mode)

O/A sensor input Disabled (enable if on O/A sensor connected) jumper set for passive

CO2 sensor Input Disabled (enable if CO2 sensor to be connected)
Start / Stop Mode via Time Switch Operation Mon-Fri 8:00-17:30

After hours / Run Timer set for 2 hours

	RELAY	MODE	DB	SD	PB	I	TD	U	SE		
	R1	В	3.0	1.0			3.0	HEAT & C	OOL STAGE 3	(COMP.3)	
	R2	В	2.0	0.7			2.0	HEAT & C	OOL STAGE 2	(COMP.2)	
	R3	В	1.0	0.3			1.0	HEAT & C	OOL STAGE 1	(COMP.1)	
	R4	Н	0.5	0.4			0.1	REVERSI	NG VALVE HEA	AT MODE	
	R5							FIXED AS	SYSTEM ON I	RELAY (FAN)	
	Y1	С	0.1		1.0	OFF		ECONOM'	Y CYCLE DAM	PER O/P	
	Y2	В	1.0		1.0	OFF		MODULAT	TING COMPRE	SSOR O/P	
Y2 —	23		S2	G OUTPU	\$1	RVH	32/	COOLING O	\$2	23	Y1 Y2
	R1		R2	A TOD COM	R3	R4		R3 Killiling	R2	R1	
	19		20		21			ro W	24	<u>ව</u> ව	
						SETPI 22.0					

Typical Wiring Connections


AVAILABLE SENSORS

SRT-D 2 WIRE ROOM TEMPERATURE SENSOR SRT-DSW + ON/OFF SWITCH 2 WIRE SRT-DSP C/W SETPOINT POT. 3 WIRE SRT-DSPSW 3 WIRE C/W S/P + ON/OFF SW. SDT-D **DUCT TEMPERATURE SENSOR** 2 WIRE 2 WIRE SOT-D **OUTSIDE AIR SENSOR (PASSIVE)** 3 WIRE **OSAO OUTSIDE AIR SENSOR (ACTIVE)** 3 WIRE CDT-2N40 **ROOM CO2 SENSOR**

OPERATIONAL NOTES:

If a remote setpoint device is connected (X2) then local setpoint control (via Controllers UP & DOWN buttons) is disabled.

System Off & AHR switch functions can be triggered by connections to either X1 or D1. Manual Off (X1 or D1) takes priority over manual On (D2).

Wiring Considerations

The Controller requires either a 12-24Volt AC or DC Supply. Supply

This diagram assumes a 24 Volt AC connection. Note terminals "M" & "-" are Voltage

internally connected so as to allow a common ground reference.

Its is recommended to connect remote input devices using twisted pair Cabling screened cable. Screened cable shield should be grounded to a good Earth

Requirements at the controller end only.